Abstract
In this article, we investigated an initial boundary value problem for the linearized KDV equation on a simple metric graph consisting of two bounded segments and one semi-infinite straight line connected at one point, called the vertex of the graph. The uniqueness of the solution is proved by the method of energy integrals.
Using the potential method, an integral formula is constructed for solving the problem under consideration.
Аннотация.
В данной статье мы исследовали начально - краевую задачу для линеаризованного уравнения КДВ на простом метрическом графе, состоящем из двух ограниченных отрезков и одной полу-бесконечной прямой, соединенных в одной точке, называемой вершиной графа. Единственность решения доказана методом интегралов энергии.
С помощью метода потенциалов построена интегральная формула для решения рассматриваемой задачи.
Annotatsiya.
Mazkur maqolada ikkita chekli kesma va bitta cheksiz grafning uchi deb ataluvchi bitta nuqtada birlashtirishdan hosil bo'lgan sodda metrik grafda chiziqli KDV tenglamasi uchun boshlang'ich chegaraviy masala qaralgan. Masala yechimi yagonaligi energiya integrallari usulida isbotlangan. Potensiallar usulidan foydalanib masala yechimi integral formula olingan.
Keywords. Third order PDE, boundary value problem, method of energy integrals, method of potentials, initial condition, boundary condition, integral equation.